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Abstract: Networked control systems with encrypted sensors measurements is considered.
Semi-homomorphic encryption is used so that the controller can perform the required com-
putation on the encrypted data. Specifically, in this paper, the Paillier encryption technique
is utilized that allows summation of decrypted data to be performed by multiplication of the
encrypted data. Conditions on the parameters of the encryption technique are provided that
guarantee the stability of the closed-loop system and ensure certain bounds on the closed-loop
performance.
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1. INTRODUCTION

Recent technological advances in communication engineer-
ing have facilitated the design and the deployment of large-
scale systems that are remotely monitored and controlled.
Modern infrastructures, such as smart grids and intelligent
transportation systems, are examples of such systems. The
massive size of the collected data and the computational
power required for operating these systems have moti-
vated outsourcing estimation and control tasks to third-
party platforms, namely, the cloud-computing companies.
This allows the system operator to considerably save in
terms of the required infrastructure and the budget for
expanding the system. Although very desirable, relying on
third-party computation is not without its perils. Cyber-
security threats and invasion of privacy of the users are
just two examples of the sort of problems arising in this
context (Amin et al., 2015; Teixeira et al., 2015; Yang
et al., 2015).

Cyber-security attacks can be decomposed into various
categories based on the type and the amount of the re-
sources that the attacker uses to achieve its goal (Teixeira
et al., 2015). Eavesdropping is one of the most basic
attacks that requires a relatively low amount of resources.
This attack also serves as the starting part of many more
sophisticated attacks (Mo and Sinopoli, 2009). In eaves-
dropping attacks, the adversary listens to the communi-
cation channel between the sensors, the controller, and
the actuator to extract valuable information about the
model and the controller based on the transmitted data.
Encryption is a tool that is widely utilized to combat such
attacks. A typical control loop with encryption-decryption
units is shown in Figure 1. The sensor and the controller
encrypt their signals before transmitting them through the
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communication network. This technique is very good for
making eavesdropping attacks difficult over the communi-
cation channel, i.e., points A and B in Figure 1. However,
the encryption is useless if the cloud-computing platform
is compromised, i.e., if the attacker has access to points C,
D, and E in Figure 1. Privacy breaches also happen most
often inside the cloud-computing services, where a third-
party can reconstruct the private data of the participants
or the infrastructure. Hence, encryption techniques in the
networked systems of the form in Figure 1 are not effective
for these privacy breaches. In light of these observations,
it is desirable to use encryption techniques, such as semi-
homomorphic encryption, that do not require the data to
be decrypted before entering the cloud-computing services.
Thus, reducing the risks of cyber-security attacks and
privacy breaches also in points C, D, and E in Figure 1.

In this paper, a networked control loop of the form of
Figure 2 is closely studied. Homomorphic encryption is
a form of encryption that allows the controller (on the
cloud-computing platform) to carry out the necessary
computations on encrypted data. Semi-homomorphic en-
cryption are a simpler form of homomorphic encryption
that only allow for a category of operations to be per-
formed on the encrypted data. For instance, the Paillier
method (Paillier, 1999), which is a semi-homomorphic
encryption techniques, allows summation of plain data
to be performed by multiplication of the encrypted ones.
On contrary, ElGamal encryption (ElGamal, 1985) allows
the multiplication of plain data using the multiplication
of the encrypted data. In contrast, fully-homomorphic
encryption schemes, such as Gentry’s encryption (Gentry,
2009), allow for both multiplication and summation of
plain data through appropriate arithmetic operations on
the encrypted data. In this paper, the Paillier encryption
technique is used for secure and private computation of
control laws using untrusted cloud-computing platforms.
Specifically, in this paper, the parameters of the Paillier



encryption technique are determined so that the stability
of the closed-loop system and its closed-loop performance
can be guaranteed.

This is not the first time that the semi-homomorphic or
homomorphic encryption schemes are utilized when using
third-party cloud-computing services; e.g., see (López-Alt
et al., 2012; Brenner et al., 2011; Ren et al., 2012; Ker-
schbaum, 2012; Kogiso and Fujita, 2015) and the refer-
ences there-in. However, none of these studies, except (Ko-
giso and Fujita, 2015), have considered these techniques in
networked control system. In addition, in (Kogiso and Fu-
jita, 2015), only a framework for using semi-homomorphic
encryption in networked control systems is developed and
practical aspects, such as ensuring stability and maintain-
ing the closed-loop performance of the system, are not
studied.

The rest of the paper is organized as follows. First,
background materials on fixed-point arithmetic and semi-
homomorphic encryptions are presented in Section 2. The
control strategy is discussed in Section 3. Numerical exam-
ples are provided in Section 4 and the paper is concluded
in Section 5.

2. BACKGROUND MATERIALS

2.1 Fixed-Point Arithmetic

The objects of interest, in this paper, are signed fixed-point
rational numbers in base 2, such as

± cn−1cn−2 · · · cm+1︸ ︷︷ ︸
integer bits

. cmcm−1 · · · c1︸ ︷︷ ︸
fractional bits

for given integers n,m ∈ N such that m ≤ n. The set of
all such numbers can be denoted by

Q(n,m) :=

{
b ∈ Q | b = −bn2n−m−1 +

n−1∑
i=1

2i−m−1bi,

bi ∈ {0, 1} ∀i ∈ {1, . . . , n}
}
.

This set contains all rational numbers between −2n−m−1

and 2n−m−1 − 2−m separated from each other by the
resolution 2−m. Although conceptually useful, these fixed-
point rationals need to be transformed into integers so
that a digital processor can use them. To do so, define
the mapping fn,m : Q(n,m) → Z2n such that fn,m(b) =
2mbmod 2n for all b ∈ Q(n,m). The notation Zq denotes
the set of integers modulo q for all q ∈ N. Moreover,
define the inverse mapping f−1

n,m : Z2n → Q(n,m) such

that f−1
n,m(a) = (a− 2n1a≥2n−1)/2m for all a ∈ Z2n , where

1p is a characteristic function that is equal to one if the
statement p holds true and equal to zero otherwise.

Proposition 1. The following two statements are valid:

(1) f−1
n,m(fn,m(b)) = b for all b ∈ Q(n,m);

(2) fn,m(f−1
n,m(a)) = a for all a ∈ Z2n .

Proof. See Appendix A. �

This proposition shows that Q(n,m) is isomorph to Z2n

and thus every operation in the set of signed fixed-point
rationals Q(n,m) can be translated into an operation in

the set of integers modulo 2n and vice versa. This rela-
tionship is explored in detail in the following proposition.
Noting that n and m are clear from the context, with slight
abuse of notation, in this proposition, f and f−1 are used
instead of fn,m and f−1

n,m, respectively.

Proposition 2. The following identities hold:

(1) For all b, b′ ∈ Q(n,m) such that b + b′ ∈ Q(n,m),
f(b+ b′) = (f(b) + f(b′)) mod 2n;

(2) For all b ∈ Q(n,m) such that −b ∈ Q(n,m), f(−b) =
2n − f(b);

(3) For all b, b′ ∈ Q(n,m) such that b − b′ ∈ Q(n,m),
f(b− b′) = (2n + f(b)− f(b′)) mod 2n;

(4) For all b, b′ ∈ Q(n,m) such that bb′ ∈ Q(n,m),
f(bb′) = ((f(b)−2n1b<0)(f(b′)−2n1b′<0)/2m) mod 2n.

Proof. See Appendix B. �

For the ease of the presentation of the operations in Z2n ,
the following operators for all a, a′ ∈ Z2n are defined:

a
n
⊕a′ = (a+ a′) mod 2n,

a
n
	a′ = (2n + a− a′) mod 2n,

a
n
⊗
m
a′ = ((a− 2n1a≥2n−1)(a′ − 2n1a′≥2n−1)/2m) mod 2n.

The following properties can be proved for these new
operators.

Corollary 1. The following identities hold:

(1) For all b, b′ ∈ Q(n,m) such that b + b′ ∈ Q(n,m),

fn,m(b+ b′) = fn,m(b)
n
⊕fn,m(b′);

(2) For all b ∈ Q(n,m) such that −b ∈ Q(n,m),

fn,m(−b) = 0
n
	fn,m(b);

(3) For all b, b′ ∈ Q(n,m) such that b − b′ ∈ Q(n,m),

fn,m(b− b′) = fn,m(b)
n
	fn,m(b′);

(4) For all b, b′ ∈ Q(n,m) such that bb′ ∈ Q(n,m),

fn,m(bb′) = fn,m(b)
n
⊗
m
fn,m(b′).

Proof. The proof directly follows from the application of
Proposition 2. �

The multiplication is more difficult to implement in com-
parison to the summation as the sign of the operands
(i.e., the numbers on which the operators act) needs to be
checked. This creates difficulties in the subsequent sections
(as the sign of encrypted numbers cannot be checked).
Interestingly, this difficulty is caused by the existence of
the fractional bits. The following properties of the multi-
plication are used in the subsequent sections to overcome
the difficulty of implementing it.

Proposition 3. The following properties are valid:

(1) a
n
⊗
0
a′ = aa′mod 2n;

(2) a
n
⊗
m
a′ = (aa′/2m) mod 2n if 2m|a′ and a′ < 2n−1.

Proof. See Appendix C. �

Note that if a is divisible by 2m then f−1
n,m(a) is an

integer. Therefore, the complexity of the implantation can
be reduced by ensuring that one of the numbers is positive
and that its fixed-point representation is integer. Finally,
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Fig. 1. The schematic diagram of a networked control system with encryption-decryption units.
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Fig. 2. The schematic diagram of a networked control system with semi-homomorphic encryption-decryption units.

the following useful property can be used for cases where
m 6= 0.

Proposition 4. For all b, b′ ∈ Q(n,m) such that bb′ ∈
Q(n,m),

fn+2m,0(22mbb′) = fn+2m,0(2mb)
n+2m
⊗
0

fn+2m,0(2mb).

Proof. See Appendix D. �

The result of Proposition 4 is particularly useful as the

implementation of the operation
n+2m
⊗
0

does not require

comparisons (see Proposition 3) in contrast to implemen-

tation of
n
⊗
m

.

2.2 Semi-Homomorphic Encryption

In this subsection, a simple semi-homomorphic encryption
scheme, namely, the Paillier encryption technique, is in-
troduced. This technique relies on Decisional Composite
Residuosity Assumption 1 (Paillier, 1999). The encryption
scheme is as follows:

• Key generation:
- Select large prime numbers p and q randomly and

independently of each other such that gcd(pq, (1 −
p)(1 − q)) = 1, where gcd(a, b) refers to the greatest
common divisor of a and b;

- Compute N = pq;
1 Decisional Composite Residuosity Assumption refers to that given
integers N ∈ Z and x ∈ ZN2 , it is “hard” to decide whether there
exists y ∈ ZN2 such that x ≡ yN modN . This is equivalent to that
the decryption without access to the private key is computationally
impossible unless P=NP.

- Set λ = lcm(p− 1, q − 1) and µ = λ−1 modN , where
lcm(a, b) refers to least common multiple of a and b.

• Encryption:
- Select random r ∈ Z∗N := {x ∈ ZN | gcd(x,N) = 1};
- Construct the ciphertext of a message t ∈ ZN as
E(t; r) = (N + 1)trN modN2.

• Decryption:
- For any ciphertext c ∈ ZN2 , the plain text is given

by D(c) = L(cλ modN2)µmodN , where L(x) = (x−
1)/N .

In the Paillier encryption scheme, N is the public key
(i.e., it is shared with all the parties and is used for
encryption) and the pair (λ, µ) is the private key (i.e., only
the entity that needs to decrypt the data has access to
it). Following (Paillier, 1999), an important (and obvious)
property of the this system is that

D(E(t; r)) = t, ∀r ∈ Z∗N ,∀t ∈ ZN .
This shows that there is an invertible relationship between
the encrypted texts and the plain text. The following
important properties can be proved to establish that the
Paillier is a semi-homomorphic encryption scheme.

Proposition 5. The following identities hold:

(1) For all r, r′ ∈ Z∗N and t, t′ ∈ ZN such that t+t′ ∈ ZN ,
E(t; r)E(t′; r′) modN2 = E(t+ t′; rr′);

(2) For all r ∈ Z∗N and t, t′ ∈ ZN such that tt′ ∈ ZN ,

E(t; r)t
′
modN2 = E(t′t; rt

′
).

Proof. See Appendix E. �

These two properties provide an opportunity to perform
calculations on the encrypted data. However, noting that
it is impossible to check the sign of an encrypted number,
multiplication is not easy to implement. The following



result identifies a few cases in which the multiplication
is implementable.

Proposition 6. Assume that N > 2n. For all r ∈ Z∗N and
a, a′ ∈ Z2n , the following statements are valid:

(1) D((E(a; r)a
′
modN2)θ modN2) mod 2n = a

n
⊗
m
a′ with

θ = 2−m modN , if a
n
⊗
m
a′ ∈ Z2n , a, a′ < 2n−1, and

gcd(2m, N) = 1;

(2) D(E(a; r)a
′/2m

modN2) mod 2n = a
n
⊗
m
a′ if a

n
⊗
m
a′ ∈

Z2n , 2m|a′, and a′ < 2n−1;

(3) D(E(a; r)a
′
modN2) mod 2n = a

n
⊗
0
a′ if a

n
⊗
0
a′ ∈ Z2n .

Proof. See Appendix F.

Proposition 6 requires that the outcome of the multipli-
cation does not overflow (i.e., it does not become large
than Z2n). Since checking overflows are not possible when
working with the encrypted data, it is up to the designer
to select a large enough set of fixed point rationals so that
the outcome of all the algebraic computations stays inside
the same set.

With these background material in hand, the control
architecture is presented in the next section.

3. CONTROL ARCHITECTURE

Consider the discrete-time linear time-invariant dynamical
system of the form

x[k + 1] = Ax[k] +Bu[k], x[0] = x0, (1a)

y[k] = Cx[k], (1b)

where x[k] ∈ Rpx denotes the state, u[k] ∈ Rpu denotes
the control input, and y[k] ∈ Rpy denotes the outputs
measured by the sensors. The controller takes the form of

u[k] = Ky[k]. (2)

Throughout this paper, the following assumption is made.

Assumption 1. There exists K̄ ∈ Rpu×py such that A +
BK̄C is Schur, i.e., all the eigenvalues of A + BK̄C are
inside the unit circle in the complex plane.

Conditions for checking the validity of this assumption
as a function of the model matrices and their sparsity
patterns are given in (Wang and Davison, 1973; Anderson
and Clements, 1981). To be able to implement the control
law in (2) on digital computers, one needs to restrict
the control gain to be in the set Q(n1,m1)pu×py for
some appropriately selected parameters n1,m1 ∈ N. The
existence of such quantized control gains is ensured by
that the eigenvalues of a matrix are continuous functions
of the entries of the matrix (Serre, 2010, p. 88-89). In
fact, the continuity shows that, for any K̄ ∈ Rpu×py such
that A + BK̄C is Schur, there exists ε(K̄) > 0 such that
A + BKC is Schur if ‖K − K̄‖F ≤ ε(K̄). The following
results can be proved.

Proposition 7. Let K̄ ∈ Rpu×py such that A + BK̄C
is Schur. Let K ∈ arg minK′∈Q(n1,m1)pu×py ‖K ′ − K̄‖F
for m1 ≥ d− log2(ε(K̄)/

√
pupy)e and n1 ≥ dm1 + 1 +

log2(maxi,j |K̄ij |)e. Then, A+BKC is Schur.

Proof. See Appendix G. �

Algorithm 1 Secure and private implementation of the
static controller with encrypted output measurements.

Require: n1, m1, n2, m2, K̄, y[k], p, q
Ensure: u[k]

1: Set n = py + n1 + n2 and m = m1 +m2

2: # Control designer
3: Compute K ∈ arg minK′∈Q(n1,m1)pu×py ‖K ′ − K̄‖F
4: Transmit Lji = fn+2m,0(2mKji) to the controller
5: # Sensors
6: for i = 2, . . . , py do
7: Construct ỹi[k] by projecting yi[k] in Q(n2,m2)
8: Transmit zi = E(fn+2m,0(2mỹi[k]); r) to the con-

troller
9: end for

10: # Controller
11: for j = 2, . . . , pu do

12: Set wj [k] = z
Lj1

1 modN2

13: for i = 2, . . . , py do

14: Compute wj [k] = (wj [k](z
Lji

i modN2)) modN2

15: end for
16: Transmit wj [k] to the actuators
17: end for
18: # Actuators
19: for j = 2, . . . , pu do
20: Implement uj [k] = D(wj [k]) mod 2n+2m/22m

21: end for

In addition to quantizing the controller parameters, the
output of the system needs to be also quantized. Let ỹ[k]
denoted the quantized version of the output y[k], that is,

ỹ[k] = min
z∈Q(n2,m2)py

‖z − y[k]‖2,

for appropriately selected n2,m2 ∈ N. To be able to
properly quantize the output, it should be proved that
it stays bounded.

Proposition 8. Assume that A + BKC is Schur. There
exists M(x0) > 0 such that y[k] ∈ [−M(x0),M(x0)]py for
the system (1) with controller u[k] = Kỹ[k] if n2 ≥ dm2 +
1 + log2(M(x0))e.

Proof. See Appendix H. �

The control designer, the sensors, the controller (which is
implemented on the cloud), and the actuators can follow
Algorithm 1 to ensure the private and secure implementa-
tion of the static control law in (2).

Theorem 1. Let K̄ ∈ Rpu×py be such that A + BK̄C is
Schur. Assume

N > 2py+n1+n2 , (3a)

m1 ≥ d− log2(ε(K̄)/
√
pupy)e, (3b)

n1 ≥ dm1 + 1 + log2(max
i,j
|K̄ij |)e, (3c)

n2 > dm2 + 1 + log2(M(x0))e. (3d)

Then limk→∞ dist(x[k],B(2−m2ξ)) = 0, where ξ > 0 is a
constant 2 , if the controller is calculated by Algorithm 1.

Proof. See Appendix I. �

Contrary to the previously-described scenario, it could be
of interest to encrypt the controller parameters instead
2 ξ = (c1 +c2)/λmin(Q) where Q, c1, and c2 are defined in the proof
of Proposition 8.



Algorithm 2 Secure and private implementation of the
static controller with encrypted control parameters.

Require: n1, m1, n2, m2, K̄, y[k], p, q
Ensure: u[k]

1: Set n = py + n1 + n2 and m = m1 +m2

2: # Control designer
3: Compute K ∈ arg minK′∈Q(n,m)pu×py ‖K ′ − K̄‖F
4: Transmit Lji = E(fn+2m,0(2mKji); r) to the con-

troller
5: # Sensors
6: for i = 2, . . . , py do
7: Construct ỹi[k] by projecting yi[k] in Q(n,m)
8: Transmit ȳi[k] = fn+2m,0(2mỹi[k]) to the controller
9: end for

10: # Controller
11: for j = 2, . . . , pu do

12: Set wj [k] = L
ȳ1[k]
j1 modN2

13: for i = 2, . . . , py do

14: Compute wj [k] = (wj [k](L
ȳi[k]
ji modN2)) modN2

15: end for
16: Transmit wj [k] to the actuators
17: end for
18: # Actuators
19: for j = 2, . . . , pu do
20: Implement uj [k] = D(wj [k]) mod 2n+2m/22m

21: end for

of the output measurements. This could be because of
that the controller is a trade secret and needs to be kept
privately while outsourcing the computational aspects to
the cloud services. Algorithm 2 describes the procedure
that the sensors, the controller (on the cloud), and the
actuators must follow to ensure the controller parameters
are protected.

Theorem 2. Let K̄ ∈ Rpu×py be such that A + BK̄C
is Schur. Assume that the conditions in (3) hold. Then
limk→∞ dist(x[k],B(2−m2ξ)) = 0, where ξ > 0 is a
constant, if the controller is calculated by Algorithm 2.

Proof. The proof is similar to the that of Theorem 1. �

4. NUMERICAL EXAMPLE

In this section, the application of Algorithm 1 to derive
a nonholonomic vehicle to a desired location is demon-
strated. The vehicle motion is assumed to be governed by

ẋ1 = v cos θ, (4)

ẋ2 = v sin θ, (5)

θ̇ = ω, (6)

where x = [x1, x2]> and θ denote the position and the
heading of the vehicle, respectively. Moreover, v and ω
are respectively the speed and the angular velocity of
the vehicle and are used as control inputs. The feedback
linearization of the type introduced in (De Luca et al.,
2000) is employed where

v̇ = u1 cos θ + u2 sin θ (7)

ω =
−u1 sin θ + u2 cos θ

v
, (8)

with u1 and u2 used as control inputs of the feedback
linearized system. It is assumed that this linearizing con-
trol is implemented locally and Algorithm 1 is used to

compute u1 and u2. Note that under (7) and (8) the
dynamics of x1 and x2 are akin to those of two decoupled
double integrators with inputs u1 and u2. It is assumed
that outputs of the feedback linearized system, x1 and
x2, as well as the desired destination are projected onto
Q(5, 5) and are encrypted using random prime numbers in
[2127, 2128]. This ensures that an eavesdropper can neither
figure out the current nor the desired destination of the
vehicle. The controller is a proportional controller with
integer coefficients. The average necessary times for en-
cryption, control input computation, and decryption on
a 2.8 GHz Intel Core i7 MAC laptop using Python 3.4
are respectively 2.84ms, 2.93ms, and 0.96ms. The first
and the second states (position) trajectories of the vehicle
are depicted in Figure 3 where the desired destination is
[5,−4]>.
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Fig. 3. The coordinates of a nonholonomic vehicle with
encrypted feedback control.

5. CONCLUSIONS

In this paper, networked control systems with encrypted
sensors measurements were considered. It was assumed
that the sensors use the Paillier encryption, which is
a semi-homomorphic encryption, so that the controller
can perform the required computation on the encrypted
data. The parameters of the encryption technique were
constructed to guarantee the stability of the closed-loop
system and to ensure certain bounds on the closed-loop
performance. Future research questions may include im-
plementing dynamic feedback controllers and taking ad-
vantage of hardware acceleration for faster computation
of the components of Algorithm 1 and Algorithm 2.
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Appendix A. PROOF OF PROPOSITION 1

Since the proofs of parts (1) and (2) are very similar, the
proof of part (1) is only presented. First, note that

f−1(f(b)) = f−1(2mbmod 2n)

= f−1

((
− bn2n−1 +

n−1∑
i=1

2i−1bi

)
mod 2n

)
,

where bi ∈ {0, 1} for all i ∈ {1, . . . , n} are selected so

that b = −bn2n−m−1 +
∑n−1
i=1 2i−m−1bi. For b ≥ 0, the

expression for f−1(f(b)) can be further simplified to

f−1(f(b)) = f−1

(( n−1∑
i=1

2i−1bi

)
mod 2n

)

=

( n−1∑
i=1

2i−1bi

)
/2m

= b.

A similar argument leads to that f−1(f(b)) = b if b < 0.

Appendix B. PROOF OF PROPOSITION 2

Note that

(f(b)+f(b′)) mod 2n=(2mbmod 2n+2mb′mod 2n) mod 2n

=2m(b+ b′) mod 2n

=f(b+ b′).

For any b ∈ Q(n,m), there exists (bi)
n
i=1 ∈ {0, 1}n such

that b = −bn2n−m−1 +
∑n−1
i=1 2i−m−1bi. Therefore,

f(−b) = (−2mb) mod 2n

=



(
−
n−1∑
i=1

2i−1bi

)
mod 2n, b ≥ 0,(

2n−1 −
n−1∑
i=1

2i−1bi

)
mod 2n, b < 0,

=


2n −

n−1∑
i=1

2i−1bi, b ≥ 0,

2n−1 −
n−1∑
i=1

2i−1bi, b < 0,

=


2n − a, b ≥ 0,

2n −
(

2n−1 +

n−1∑
i=1

2i−1bi

)
, b < 0,

= 2n − a,
where a = f(b). For the product operation, the proof needs
to be separated into multiple cases:

• Case 1 (b, b′ ≥ 0): Let a, a′ ∈ Z2n and b, b′ ∈ Q(n,m)
be such that a = f(b) and a′ = f(b′). In this case, it
can be proved that

f(bb′) = f(f−1(a)f−1(a′))

= f((a− 2n1a≥2n−1)(a′ − 2n1a′≥2n−1)/22m)

= f(aa′/22m)

= (aa′/2m) mod 2n.

• Case 2 (b ≥ 0 and b′ < 0): Note that

f(bb′) = f((a− 2n1a≥2n−1)(a′ − 2n1a′≥2n−1)/22m)

= f(a(a′ − 2n)/22m)

= (a(a′ − 2n)/2m) mod 2n.



• Case 3 (b, b′ < 0): It can be shown that

f(bb′) = f((a− 2n1a≥2n−1)(a′ − 2n1a′≥2n−1)/22m)

= f((a− 2n)(a′ − 2n)/22m)

= ((a− 2n)(a′ − 2n)/2m) mod 2n.

This concludes the proof.

Appendix C. PROOF OF PROPOSITION 3

The proof of part (1) directly follows from the application
of Proposition 2. For part (2), the following two cases may
occur:

• Case 1 (a < 2n−1): In this case, by definition, a
n
⊗
m

a′ = (aa′/2m) mod 2n.
• Case 2 (a ≥ 2n−1): Note that

a
n
⊗
m
a′ = ((a− 2n)a′/2m) mod 2n

= (aa′/2m − 2n(a′/2m)) mod 2n

= (aa′/2m) mod 2n,

where the last equality follows from that a′/2m ∈ Z.

This concludes the proof.

Appendix D. PROOF OF PROPOSITION 4

First, construct b̄ = 2mb and b̄′ = 2mb′. Since b, b′ ∈
Q(n,m), it can be deduced that b̄, b̄′ ∈ Q(n + 2m, 0). Let
a = fn,m(b), a′ = fn,m(b′), ā = fn+2m,0(b̄), and ā′ =
fn+2m,0(b̄′). Now, Corollary 1 can be used to show that

fn+2m,0(b̄b̄′) = ā
n+2m
⊗
0

ā′ since b̄b̄′ ∈ Q(n+2m, 0) following

the observation that b̄b̄′ = 22mbb′ with bb′ ∈ Q(n,m).

Therefore, fn,m(bb′) = fn,m(b̄b̄′/22m) = fn,m(f−1
n+m,0(ā

n
⊗
0

ā′)/22m).

Appendix E. PROOF OF PROPOSITION 5

Notice that

E(t; r)E(t′; r′) modN2

= (N + 1)t+t
′
(rr′)N modN2

= E(t+ t′; rr′), ∀r, r′ ∈ Z∗N ,∀t, t′ ∈ ZN ,
and

E(t; r)t
′
modN2 = (N + 1)t

′trt
′N modN2

= E(t′t; rt
′
), ∀r ∈ Z∗N ,∀t, t′ ∈ ZN .

This concludes the proof.

Appendix F. PROOF OF PROPOSITION 6

The proof of part (1) follows from

(E(a; r)a
′
modN2)θmodN2=E((aa′) modN ; ra

′
)θ modN2

=E((aa′θ) modN ; ra
′θ)

=E((aa′/2m) modN ; ra
′θ)

=E(aa′/2m; ra
′θ)

=E(a
n
⊗
m
a′; ra

′θ).

The proof of the rest of the parts follows from the appli-
cation Propositions 5 and 3.

Appendix G. PROOF OF PROPOSITION 7

If n1 and m1 are selected such that 2n1−m1−1 >
maxi,j |K̄ij | and 2−m1 ≤ ε(K̄)/

√
pupy, then

‖K − K̄‖F =

√∑
i,j

(Kij − K̄ij)2
2

≤
√∑

i,j

2−2m1

≤
√∑

i,j

ε(K̄)2/(pupy)

= ε(K̄).

This concludes the proof.

Appendix H. PROOF OF PROPOSITION 8

The stability of the closed-loop system implies that there
exists a Lyapunov function of the form x>Px with
positive-definite P for which (A+BKC)>P (A+BKC)−
P = −Q < 0 (Hespanha, 2009, p. 71). Let e[k] = y[k] −
ỹ[k]. Assume that |ei[k]| ≤ 2−m2 for all k. First, it is proved
that X := {x ∈ Rpx |x>Px ≤ ζ} for an appropriately
selected ζ is an invariant set. Notice that

x[k + 1]>Px[k + 1]− x[k]>Px[k]

=x[k]>((A+BKC)>P (A+BKC)− P )x[k]

+ 2x[k]>(A+BKC)>PBKe[k]

+ e[k]>(BK)>PBKe[k]

≤− x[k]>Qx[k] + c12−m2 + c22−2m2 (H.1)

≤− x[k]>Qx[k] + (c1 + c2)2−m2 , (H.2)

where

c1 = 2
√
ζ/λmin(P )

∑
i,j

|Wij |,

c2 = pyλmax(K>B>PBK).

The inequality in (H.1) follows from that

2x[k]>(A+BKC)>PBKe[k]

≤2|x[k]>We[k]|
≤2
∑
i,j

|xi[k]||Wij ||ej [k]|

≤
(

2
√
ζ/λmin(P )

∑
i,j

|Wij |
)

2−m2 ,

where W = (A+BKC)>PBK. Evidently, x[k+1]>Px[k+
1] − x[k]>Px[k] < 0 if x[k]>Qx[k] ≥ (c1 + c2)2−m2 . This
proves that X is an invariant set if ζ = max(x>0 Px0, (c1 +
c2)2−m2). Now, the constant M(x0) can be chosen such as
M(x0) = maxx∈X max1≤i≤py |Cix|, where Ci denotes the
i-th row of matrix C. Finally, if n2 is selected such that
2n2−m2−1 > M(x0), it can be ensured that |ei[k]| ≤ 2−m2 .
This concludes the proof.

Appendix I. PROOF OF THEOREM 1

First, note that

x[k + 1]>Px[k + 1]− x[k]>Px[k]

≤− x[k]>λmin(Q)x[k] + (c1 + c2)2−m



with the controller u[k] = Kỹi[k]. Hence, x[k+ 1]>Px[k+
1] − x[k]>Px[k] < 0 if x[k] ∈ {x ∈ Rpx | ‖x‖22 ≥
(c1 + c2)2−m/λmin(Q)}. Therefore, if the controller u[k] =
Kỹi[k] is correctly calculated, the states converge to the set
B(2−m(c1 + c2)/λmin(Q)). To be able to use the results of
Proposition 3, 5, and 6, the outcome of all the summations
and the multiplications should not over flow or under flow
from the set Q(n,m). Therefore, n ≥ py + n1 + n2 and
m ≥ m1 + m2 must be selected to ensure this property.
These numbers are calculated based on the worst-case
scenarios (very large or very small numbers are multiplied
and summed). The rest of the proof follows from the
application of Propositions 3, 5, and 6.
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